Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ter Arkh ; 94(12): 1421-1425, 2023 Jan 16.
Article in Russian | MEDLINE | ID: covidwho-20241378

ABSTRACT

Cell death is an important feature of the development of multicellular organisms, a critical factor in the occurrence of cardiovascular diseases. Understanding the mechanisms that control cell death is crucial to determine its role in the development of the pathological process. However, the most well-known types of cell death cannot fully explain the pathophysiology of heart disease. Understanding how cardiomyocytes die and why their regeneration is limited is an important area of research. Ferroptosis is an iron-dependent cell death that differs from apoptosis, necrosis, autophagy, and other forms of cell death in terms of morphology, metabolism, and protein expression. Ferroptotic cell death is characterized by the accumulation of reactive oxygen species resulting from lipid peroxidation and subsequent oxidative stress, which can be prevented by iron chelates (eg, deferoxamine) and small lipophilic antioxidants (eg, ferrostatin, liproхstatin). In recent years, many studies have been carried out on ferroptosis in the context of the development of atherosclerosis, myocardial infarction, heart failure, and other diseases. In addition to cardiovascular diseases, the review also presents data on the role of ferroptosis in the development of other socially significant diseases, such as COVID-19, chronic obstructive pulmonary disease. With the study of ferroptosis, it turned out that ferroptosis participates in the development of bacterial infection associated with the persistence in the host body of Pseudomonas aeruginosa. The review summarizes the recent advances in the study of ferroptosis, characterizing this type of cell death as a novel therapeutic target.


Subject(s)
COVID-19 , Cardiovascular Diseases , Ferroptosis , Humans , Ferroptosis/physiology , Cardiovascular Diseases/etiology , Apoptosis , Cell Death , Reactive Oxygen Species/metabolism
2.
Moscow Univ Biol Sci Bull ; 77(3): 184-191, 2022.
Article in English | MEDLINE | ID: covidwho-2109640

ABSTRACT

An elevated level of circulatory interleukin 6 (IL-6) is a biomarker for cytokine storm of various etiologies, including COVID-19, and contributes to poor prognosis. Vascular endothelial cells are one of the main targets of pathological action of IL-6. IL-6 activates the trans-signaling pathway via the formation of the IL-6/sIL-6Ra/gp130 receptor complex and subsequent activation of the JAK/STAT3 signaling pathway and PI3K/AKT and MEK/ERK kinases in some cases. Previously, it was shown by the authors' group and other researchers that reactive oxygen species (ROS), including mitochondrial ROS (mito-ROS), contribute to the induction of IL-6 expression in the endothelium, mainly due to increased activation of the transcription factor NF-kB. We have also shown that the mitochondria-targeted antioxidant SkQ1 (Plastoquinolyl-10(6'-decyltriphenyl)phosphonium) prevented tumor necrosis factor (TNF)-induced cytokine storm and death in mice. In the aortas of these animals, SkQ1 also prevented the increase in the expression of NF-kB-dependent genes, including the cytokine IL-6 and the chemokine MCP-1. In the current work, the hypothesis of mito-ROS involvement in the IL-6-signaling-mediated proinflammatory gene expression in endothelial cells is tested. SkQ1 suppressed the expression and secretion of the MCP-1 chemokine, induced by IL-6 in combination with sIL-6-Ra, but not the expression of ICAM-1 adhesion molecules in EA.hy926 human endothelial cells. Using specific inhibitors, the authors have shown that, in EA.hy926 cells, IL-6-induced expression of MCP-1 and ICAM-1 depends on the signaling protein and transcription activator STAT3 and, in some cases, on JNK, PI3K, and MEK1/2 kinases and is independent of p38 kinase. In this model, IL-6 induced rapid STAT3 activation, while ERK1/2 activation was less pronounced, and there was no IL-6 effect on Akt and JNK activation. SkQ1 partially suppressed STAT3 and ERK1/2 activation. Thus, we have shown that SkQ1 suppresses not only NF-kB-dependent expression of IL-6 and other proinflammatory genes but also IL-6-induced activation of JAK/STAT3 and STAT3-dependent expression of MCP-1, which probably contributes to the overall therapeutic effect of SkQ1.

3.
Biokhimiya ; 85(12):1816-1828, 2020.
Article in Russian | Russian Science Citation Index | ID: covidwho-1094803

ABSTRACT

Pathogenesis of the novel coronavirus infection COVID-19 is the subject of active research around the world. COVID-19 caused by the SARS-CoV-2 is a complex disease in which interaction of the virus with target cells, action of the immune system and the body’s systemic response to these events are closely intertwined. Many respiratory viral infections, including COVID-19, cause death of the infected cells, activation of innate immune response, and secretion of inflammatory cytokines. All these processes are associated with the development of oxidative stress, which makes an important contribution to pathogenesis of the viral infections. This review analyzes information on the oxidative stress associated with the infections caused by SARS-CoV-2 and other respiratory viruses. The review also focuses on involvement of the vascular endothelium in the COVID-19 pathogenesis. Патогенез новой коронавирусной инфекции COVID-19 является предметом активного изучения во всем мире. COVID-19, вызываемый SARS-CoV-2, представляет собой сложное заболевание, в котором тесно переплетено взаимодействие вируса с клетками-мишенями, действием иммунной системы и системной реакцией организма на эти события. Многие респираторные вирусные инфекции, включая COVID-19, вызывают смерть инфицированных клеток, активацию компонентов врожденного иммунитета и секрецию цитокинов воспаления. Все эти процессы ассоциированы с развитием окислительного стресса, который вносит важный вклад в патогенез вирусных инфекций. В данном обзоре проведен анализ информации об окислительном стрессе при инфекциях, вызываемых SARS-CoV-2 и другими респираторными вирусами. Основное внимание в обзоре уделено участию сосудистого эндотелия в патогенезе COVID-19.

4.
Biochemistry (Mosc) ; 85(12): 1543-1553, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1035276

ABSTRACT

Pathogenesis of the novel coronavirus infection COVID-19 is the subject of active research around the world. COVID-19 caused by the SARS-CoV-2 is a complex disease in which interaction of the virus with target cells, action of the immune system and the body's systemic response to these events are closely intertwined. Many respiratory viral infections, including COVID-19, cause death of the infected cells, activation of innate immune response, and secretion of inflammatory cytokines. All these processes are associated with the development of oxidative stress, which makes an important contribution to pathogenesis of the viral infections. This review analyzes information on the oxidative stress associated with the infections caused by SARS-CoV-2 and other respiratory viruses. The review also focuses on involvement of the vascular endothelium in the COVID-19 pathogenesis.


Subject(s)
COVID-19/pathology , Oxidative Stress , Angiotensin II/metabolism , Antioxidants/therapeutic use , COVID-19/virology , Cytokines/metabolism , Endothelium/cytology , Endothelium/metabolism , Humans , Immunity, Innate , Reactive Oxygen Species/metabolism , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
5.
Ter Arkh ; 92(11): 17-23, 2020 Dec 26.
Article in Russian | MEDLINE | ID: covidwho-1013627

ABSTRACT

AIM: In a retrospective study, we evaluated factors associated with the early development of septic shock in patients with severe COVID-19. MATERIALS AND METHODS: We collected medical records of the intensive care unit patients submitted by the local COVID-19 hospitals across Russia to the Federal Center for the Critical Care at the Sechenov First Moscow State Medical University (Sechenov University). Septic shock in crticially ill patients requiring mechanical ventilation was defined as a need in vasopressors to maintain blood pressure. RESULTS: We studied 1078 patients with severe COVID-19 who were admitted to the intensive care units for respiratory support. There were 611 males and 467 females. The mean age was 61.013.7 years. Five hundred twenty five medical records (48.7%) were received from the Moscow hospitals, 159 (14.7%) from the Moscow region, and 394 (36.5%) from the hospitals located in 58 regions of the Russian Federation. In 613 (56.9%) patients, diagnosis of SARS-CoV-2 infection was confirmed by PCR, and in the other cases it was established on the basis of the clinical picture and the results of the chest CT scan. Septic shock developed in 214 (19.9%) of 1078 patients. In the logistic regression model, the risk of septic shock in patients older than 50 years was higher than in patients of a younger age (OR 2.34; 95% CI 1.533.67; p0.0001). In patients with more severe SARS-CoV-2 infection, there was an increase in the prevalence of cardiovascular diseases, including coronary heart disease and atrial fibrillation, type 2 diabetes and malignant tumors. The risk of septic shock in patients with three or more concomitant diseases was higher than in patients without any concomitant chronic diseases (OR 1.76; 95% CI 1.762.70). CONCLUSION: The risk of septic shock in patients with acute respiratory distress syndrome induced by SARS-CoV-2 is higher in patients older than 50 years with concomitant diseases, although a severe course of the disease is also possible in younger patients without any concomitant disorders.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Shock, Septic , Female , Humans , Male , Middle Aged , Moscow/epidemiology , Retrospective Studies , Risk Factors , Russia/epidemiology , SARS-CoV-2 , Shock, Septic/diagnosis , Shock, Septic/epidemiology , Shock, Septic/etiology
SELECTION OF CITATIONS
SEARCH DETAIL